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Infectious diseases and computer malwares spread among humans and computers through the network of
contacts among them. These networks are characterized by wide connectivity fluctuations, connectivity corre-
lations, and the small-world property. In a previous work �Phys. Rev. Lett. 96, 038702 �2006�� I have shown
that the connectivity fluctuations together with the small-world property lead to a spreading law characterized
by an initial power law growth with an exponent determined by the average node distance on the network. Here
I extend these results to consider the influence of connectivity correlations which are generally observed in real
networks. I show that assortative and disassortative connectivity correlations enhance and diminish, respec-
tively, the range of validity of this spreading law. As a corollary I obtain the region of connectivity fluctuations
and degree correlations characterized by the absence of an epidemic threshold. These results are relevant for
the spreading of infectious diseases, rumors, and information among humans and the spreading of computer
viruses, email worms, and hoaxes among computer users.
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I. INTRODUCTION

Halting an epidemic outbreak in its early stages requires a
detailed understanding of the progression of the number of
new infections �incidence�. Current mathematical models
predict that the incidence grows exponentially during the ini-
tial phase of an epidemic outbreak �1–5�. Within this expo-
nential growth scenario infectious diseases are characterized
by the average reproductive number, giving the number of
secondary infections generated by a primary case, and the
average generation time, giving the average time elapse be-
tween the infection of a primary case and its secondary cases
�1,2�. In turn, vaccination strategies are designed in order to
modify the reproductive number and the generation time
�1,2,6,7�.

I have recently shown, however, that this picture dramati-
cally changes when the graph underlying the spreading dy-
namics is characterized by a power law degree distribution
�8,9�, where the degree of a node is defined as the number of
its connections. The significant abundance of high-degree
nodes �hubs� carries as a consequence that most nodes are
infected in a time scale of the order of the disease generation
time. Furthermore, the initial incidence growth is no longer
exponential but it follows a power law growth n�t�� tD−1,
where D is the characteristic distance between nodes on the
graph. Yet, these predictions are limited to uncorrelated
graphs and the susceptible-infected model.

In this work I extend the theory of age-dependent branch-
ing processes �4,5,10� to consider the topological properties
of real networks. First, I generalize my previous study �8,9�
to include degree correlations. This is a fundamental advance
since real networks are characterized by degree correlations
�11–14� that may significantly affect the system’s behavior
�15–17�. Second, I consider the susceptible-infected-
removed �SIR� model that provides a more realistic descrip-
tion of real epidemic outbreaks �1�, allowing us to obtain
conclusions about the impact of patient isolation and immu-
nization strategies on the final outbreak size. Finally, I survey
our current knowledge about different networks underlying

the spreading of infectious diseases and computer malwares
and discuss the impact of their topology on the spreading
dynamics.

II. POPULATION STRUCTURE

Consider a population of N susceptible agents �humans,
computers, etc.� and an infectious disease �human disease,
computer malware, etc.� spreading among them. The poten-
tial disease transmission channels are represented by an un-
directed graph, where nodes represent susceptible agents and
edges represent disease transmission channels. For example,
when analyzing the spreading of sexually transmitted dis-
eases the relevant graph is the web of sexual contacts �18�,
where nodes represent sexually active individuals and edges
represent sexual relationships.

The degree of a node is the number of edges connecting
this node to other nodes �neighbors� in the graph. Given the
finite size of the population there is a maximum degree kmax,
where kmax is at most N−1. I denote by pk the probability
distribution that a node has degree k. The results obtained in
this work are valid for arbitrary degree distributions. Never-
theless, recent studies have shown that several real networks
are characterized by the power law degree distribution

pk =
k−�

�
s=1

kmax

s−�

�1�

with ��2 �18–23�. Therefore, I focus the discussion on this
particular case.

Real networks are characterized by degree correlations
between connected nodes as well. Networks representing
technological and biological systems exhibit disassortative
�negative� correlations with a tendency to have connections
between nodes with dissimilar degrees �11,13�. In contrast,
social networks are characterized by assortative �positive�
degree correlations with a tendency to have connections
among nodes with similar degrees �12�. To characterize the
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degree correlations I consider the probability distribution
q�k� �k� that a neighbor of a node with degree k has degree
k�. It is important to note that the probability distributions pk
and q�k� �k� are related to each other by the detailed balance
condition �24�

kpkq�k��k� = k�pk�q�k�k�� . �2�

Although q�k� �k� contains all the information necessary to
characterize the degree correlations it is difficult to analyze.
A more intuitive measure which often appears in the analyti-
cal calculations �15,16� is the average neighbor excess de-
gree �11�

Kk = �
k�=2

�

q�k��k��k� − 1� . �3�

The empirical data indicate that �11,23,25,26�

Kk = ck�, �4�

where c is obtained from the detailed balance condition �2�,
resulting in

c =
�k�k − 1�	

�k1+k	
. �5�

When the degree correlations are disassortative the nearest
neighbors of a low- �high-� degree node tend to have larger
�smaller� degree. In this case Kk decreases with increasing k.
In contrast, when the degree correlations are assortative the
nearest neighbors of a low/high degree node tend to have
proportional degrees. In this case Kk increases with increas-
ing k. Therefore, disassortative and assortative correlations
are characterized by ��0 and ��0, respectively.

Real networks also exhibit the small-world property �27�,
meaning that the average distance D between two nodes in
the graph is small or it grows at most as log N. For instance,
social experiments such as the Bacon and Erdös numbers
�28� or the Milgram experiment �29� reveal that social actors
are separated by a small number of acquaintances. This prop-
erty is enhanced on graphs with a power law degree distri-
bution �1� with 2���3 �30–32�. In this case the average
distance between two nodes grows as log log N, receiving
the name of ultrasmall world �32�.

Given the graph underlying the spreading of an infectious
disease, let us consider an epidemic outbreak starting from a
single node �the root, patient zero, or index case�. In the
worst case scenario the disease propagates to all the nodes
that could be reached from the root using the graph connec-
tions. Thus, the outbreak is represented by a spanning or
causal tree from the root to all reachable nodes. The genera-
tion of a node on the tree corresponds with the topological or
hopping distance from the root. This picture motivates the
introduction of the following branching process:

Definition 1. Annealed spanning tree with degree correla-
tions. Consider a graph with degree probability distribution
pk and average degree �k	, neighbor degree distribution
q�k� �k� given a node with degree k, detailed balance condi-
tion �2�, and average distance between nodes D. The an-
nealed spanning tree �AST� associated with this graph is the

branching process satisfying the following properties.
�1� The process starts from a single node, the root, at

generation d=0. The root generates k sons with probability
distribution pk.

�2� Each son at generation 1�d�D generates k�−1 other
sons with probability distribution q�k� �k�, given its parent
node has degree k.

�3� A son at generation d=D does not generate new sons.
The term “annealed” means that we are not analyzing the

true �quenched� spanning tree on the graph but a branching
process with similar statistical properties. From the math-
ematical point of view the AST is a generalization of the
Galton-Watson branching process �10� to the case where �i�
the reproductive number of a node depends on the reproduc-
tive number of its ancestor and �ii� the process is truncated at
generation D. This mathematical construction has been pre-
viously introduced to analyze the percolation properties of
graphs with degree correlations �12�.

The sharp truncation of the branching process at genera-
tion D is an approximation. In the original graph there are
some nodes beyond the average distance between nodes D
and their average degree decreases with increasing genera-
tion. Therefore, a more realistic description is obtained de-
fining q�k� �k� as generation dependent �33,34� and truncat-
ing the branching process when the number of generations
equals the graph diameter. Yet an analytical treatment of this
more realistic model is either unfeasible or results in equa-
tions that most be solved numerically, casting doubts on its
advantage with respect to direct simulations on the original
graph. To allow for an analytical understanding I truncate the
branching process at generation d=D, where D represents
the average distance between nodes D in the original graph.
Furthermore, I assume that q�k� �k� is the same for all gen-
erations 0�d�D. At this point it is worth noticing that all
results derived below are exact for the AST but an approxi-
mation for the original graph.

III. SIR MODEL OF DISEASE SPREADING

The AST describes the case where all neighbors of an
infected node are infected and at the same time. More gen-
erally a node infects a fraction of its neighbors and these
infections take place at variable times. The susceptible
→ infected→ removed model is an appropriate framework to
consider the timing of the infection events �1�. The time
scales for the transitions susceptible→ infected and infected
→ removed are characterized by the distribution function of
infection and removal times GI��� and GR���, respectively.
For example, GI��� is the probability that the infection time
is less than or equal to �.

Consider an infected node i and a susceptible neighbor j.
The probability b�t� that j is infected by time t given i was
infected at time zero is the combination of two factors. First,
the infection time should be smaller that t and, second, the
removal time of the ancestor i should be larger than the
infection time. More precisely

b�t� = 

0

t

dGI����1 − GR���� . �6�

From b�t� I obtain the probability that j gets infected no
matter at what time
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r = lim
t→�

b�t� �7�

and the distribution function of the generation times

G��� =
1

r
b��� . �8�

In the original Kermack-McKendrick formulation of the SIR
model �35� the disease spreads at a rate � from infected to
susceptible nodes and infected nodes are removed at rate 	.
In this case the infection and removal rates � and 	 are
exponentially distributed, GI���=1−e−�� and GR���=1
−e−	�, resulting in

rSIR =
�

	 + �
, �9�

GSIR��� = 1 − e−�	+���. �10�

Some of the results obtained in this work are valid for any
generation time distribution. We focus, however, on the SIR
model with constant rate of infection and removal �9�, �10�.

At this point we can extend the AST definition to account
for the variable infection times.

Definition 2. Age-dependent AST with degree correlations.
The age-dependent AST is an AST where nodes can be in
two states, susceptible or infected, and �1� an infected node
�primary case� infects each of its neighbors �secondary cases�
with probability r; �2� The generation times, the times
elapsed from the infection of a primary case to the infection
of a secondary case, are independent random variables with
probability distribution G���.

The age-dependent AST is a generalization of the
Bellman-Harris �10� and Crum-Mode-Jagers �4,5� age-
dependent branching processes. The key new elements are
the degree correlations and the truncation at a maximum gen-
eration, allowing us to consider the topological properties of
real networks.

IV. SPREADING DYNAMICS AND FINAL OUTBREAK
SIZE

Let I�t�dt be the average number of nodes that are in-
fected between times t and t+dt given that patient zero �the
root� was infected at time zero. This magnitude is known in
the epidemiology literature as the incidence �1�. Consider an
age-dependent AST and a constant infection and removal
rate �9�, �10�. Making use of the tree structure I obtain �see
the Appendix �

I�t� = �
d=1

D

zd��
��t�d−1

�d − 1�!
e−��+	�t� , �11�

where

zd = �k	, d = 1,

�
k=1

�

pkk�k − 1�Kk
d−2, d � 1,

�12�

is the average number of nodes zd at generation d, satisfying
the normalization condition

1 + �
d=1

D

zd = N . �13�

The interpretation of �11� is the following. If we count the
time in units of 1 then on average zd new nodes are found at
each generation. Since the infection times are variable, how-
ever, nodes at the same generation may be infected at differ-
ent times. This contribution is taken into account by the fac-
tor between large parentheses in �11�, giving the probability
density of the sum of d generation times.

Independent of the particular d dependence of zd, from
�11� it follows that the incidence decays exponentially for
long times with a decay time 1/ ��+	�. This result is a con-
sequence of the population finite size, i.e., sooner or later
most of the nodes are infected and the number of new infec-
tions decays. In contrast, the factor remaining after excluding
the exponential decay is an increasing function of time and it
dominates the spreading dynamics at short and intermediate
times. I obtain the following result determining the speed of
the initial growth.

Theorem 1. Consider the normalized incidence


�t� =
I�t�
N

. �14�

If there is some integer dc�D and real numbers a and b
�0 such that for all d�dc

�pkk�k − 1�Kk
d−2	 � kmax

a+b�d−2� �15�

when kmax→� then


�t� = �
��t�D−1

�D − 1�!
e−��+	�t�1 + O� t0

t
�� , �16�

where

t0 =
1

�

D − 1

kmax
b . �17�

The symbol O�t0 / t� indicates that �16� is valid asymptoti-
cally when t� t0 and it represents correction terms of the
order of t0 / t. The demonstration of this result is straightfor-
ward. From �15� it follows that for all d�dc the average
number of nodes at generation d �12� is of the order of zd

�kmax
a+b�d−2�. Therefore, in the limit kmax→� the sums in �11�

and �13� are dominated by the d=D term and corrections are
given by the ratio between the d=D−1 and d=D terms.

The initial dynamics is characterized by a power law
growth with an exponent determined by the average distance
D. The characteristic time t0 marks the time scale when this
polynomial growth starts to be manifested. This time is par-
ticularly small for graphs with a large maximum degree and
satisfying the small world property, i.e., D is small. For in-
stance, let us consider a power law degree distribution �1�
with ��2 and degree correlations �4�. The values of � and �
for which the condition �15� is satisfied are given in Fig. 1,
together with the exponent b. Disassortative degree correla-
tions ���0� may invalidate the condition �15�, indicating
that strong disassortative correlations may lead to deviations
from the Theorem 1 prediction. This observation is in agree-
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ment with a previous study focusing on the epidemic thresh-
old �16�. In contrast, for assortative degree correlations ��
�0� the condition �15� is satisfied for all ��2. In other
words, assortative correlations enhance the degree fluctua-
tions, extending the validity of Theorem 1 to the ��3 re-
gion.

Focusing on the final size of the outbreak I obtain the
following corollary.

Corollary 1. Consider the average total number of in-
fected nodes

NI = N

0

�

dt 
�t� . �18�

If the conditions of Theorem 1 are satisfied then

NI = N� �

� + 	
�D�1 + O� �� + 	�t0

D − 1
�� . �19�

From this corollary it follows that by increasing the rate of
node removal, because of patient isolation or immunization,
we just obtain a gradual decrease in the final outbreak size.
This implies that the concept of epidemic threshold loses
sense since the outbreak size remains proportional to the
population size for all removal rates. This conclusion is in
agreement with previous studies for the cases � ,�=0
�12,36,37� and 2���3,� �15,16�. The above corollary ex-
tend these studies to the region ��3, demonstrating that
when ��0 there is not an epidemic thresholds for any value
of �.

V. DISCUSSION

Theorem 1 proposes a different law of spreading dynam-
ics characterized by an initial power law growth. In essence
the power low growth is a consequence of the small-world
property and the divergence of the average reproductive
number. Its origin is better understood by analyzing the con-

tribution of nodes at a distance d from the root. The distri-
bution of infection times of nodes at generation d is given by
the distribution of the sum of d generation times. For the
case of a constant infection rate this distribution is a gamma
distribution, which is characterized by an initial power law
with exponent d−1. This is the standard result for stochastic
processes defined by a sequence of d steps happening at a
constant rate. The total incidence is then obtained by super-
imposing the contribution of each generation d, weighted by
the average number of nodes at that generation. Since most
nodes are found at generation d=D then the contribution
from that generation dominates the incidence progression,
resulting in a power law growth with exponent D−1. The
small-world properties simply implies that D is small and the
resulting power law growth can be distinguished from an
exponential growth. The validity of this regime is restricted
to time scales that are large enough such that an appreciable
number of nodes at generation d are infected, and it is fol-
lowed by an exponential decay after most nodes at that gen-
eration are infected.

To understand the relevance of this spreading law for real
epidemic outbreaks, in the following I analyze the validity of
the conditions of Theorem 1 for real networks underlying the
spreading of human infectious diseases and computer mal-
wares.

Sexually transmitted diseases. Sexual contacts are a domi-
nant transmission mechanism of the HIV virus causing
AIDS. There are several reports indicating that the web of
sexual contacts is characterized by a power degree distribu-
tion. The current debate is if the exponent � is smaller or
larger than 3 �18,38–40�. In either case, it is known that
social networks are characterized by assortative degree cor-
relations �12�, which extends the validity of Theorem 1 to
��3 �see Fig. 1�. There is also empirical evidence indicating
that the number of AIDS infections grows as a power law in
time for several populations �1,41,42�. When this empirical
evidence is put together with that for sexual networks we
obtain a strong indication that Theorem 1 provides the right
explanation for the observed power law growth.

Airborne diseases. Airborne diseases require contact or
proximity between two individuals for their transmission. In
this case the graph edges represent potential contact or prox-
imity interactions among humans and the degree of an indi-
vidual is given by the number of people with who he/she
interacts within a certain period of time. Recent simulations
of the Portland urban dynamics �43� shows that the number
of people an individual contacts within a day follows a wide
distribution up to about 10 000 contacts. A report for the
2002–2003 SARS epidemic shows a wide distribution as
well, in this case for the number of secondary cases gener-
ated by a primary SARS infection case. Although these data
are not sufficient to make a definitive conclusion, it provides
a clear indication that the number of proximity contacts a
human undergo within a day is widely distributed. This ob-
servation together with the high degree of assortativity of
social networks opens the possibility that the spread of air-
borne diseases within a city is described by Theorem 1.

Computer malwares. Email worms and other computer
malwares such as computer viruses and hoaxes spread
through email communications. The email network is actu-

FIG. 1. �-� plane showing the regions where theorem 1 is valid
�shadowed region� for the case of a power law degree distribution
�1� and degree correlations �4�. The labels indicate the exponent b
in �15�.
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ally directed, i.e., the observation that user A has user B on
his/her address book does not imply the opposite. This is an
important distinction since the detailed balance condition �2�
is valid for graphs with undirected edges. There is, however,
a significant reciprocity, meaning that if user A has user B on
his/her address book then with high probability the opposite
takes place as well. Thus, in a first approximation we can
represent email connections by undirected links or edges
and, in such a case, the detailed balance condition �2� holds.
Recent studies of the email network structure within univer-
sity environments indicate that they are characterized by a
power law degree distribution with ��2 �21,22�. Therefore,
the spreading of computer malwares represents another sce-
nario for the application of Theorem 1. Further research is
required to determine the influence of the lack of reciprocity
among some email users.

In conclusion, Theorem 1 characterizes the spreading dy-
namics on complex networks with wide connectivity fluctua-
tions. Its Corollary 1 determines the region of connectivity
fluctuations and degree correlation where there is not an epi-
demic threshold. The empirical data indicates that the Theo-
rem conditions are satisfied for several networks underlying
the spreading of infectious diseases among humans and com-
puter malwares among computers. Therefore, I predict that
Theorem 1 is a spreading law of modern epidemic outbreaks.
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APPENDIX: ITERATIVE APPROACH

Let Pn
�d,k��t� be the probability distribution of the number

of infected nodes at time t �including those that have been
recovered�, n, on a branch of the AST of Definition 1, given
that the branch is rooted at a node at generation d and its has
degree k. In particular Pn

�0,k��t� is the probability distribution
of the total number of infected nodes at time t, given that
patient zero �the root of the tree� became infected at time
zero and its has degree k. Based on the tree structure we can
develop an iterative approach to compute Pn

�d,k��t� recur-
sively.

Proposition 1. Let i be a node at generation d with degree
k and let us denote by j its neighbors on the next generation
d+1, where j� �1, . . . ,k� if d=0, j� �1, . . . ,k−1� if 0�d
�D, and j� ��� if d=D. Then

Pn
�0,k��t� = �

n1=0

�

¯ �
nk=0

�

��i=1

k
ni+1,n�

i=1

k

�
k�=2

kmax

q�k��k�

� �r

0

t

dG���Pni

�d+1,k���t − ��

+ �ni,0
�1 − r − r�1 − G�t���� , �A1�

Pn
�d,k��t� = �

n1=0

�

¯ �
nk−1=0

�

��i=1

k−1
ni+1,n�

i=1

k−1

�
k�=1

kmax

q�k��k�

� �r

0

t

dG���Pni

�d+1,k���t − ��

+ �ni,0
�1 − r + r�1 − G�t���� , �A2�

Pn
�D,k��t� = �n,1. �A3�

Proof. Let ni be the number of infected nodes in the
branch rooted at node i, and nj the number of infected nodes
in the branches rooted at each of its neighbors j. Then

ni = 1 + �
j

nj . �A4�

Since node i and its neighbors lie on a tree then nj are un-
correlated random variables. Furthermore, all nodes at gen-
eration d have the same statistical properties, i.e., nj are iden-
tically distributed random variables. Let Qn

�d+1,k��t� be the
probability distribution of nj, given node j is at generation
d+1 and its ancestor has degree k�0. With probability 1
−r the node j is not infected at any time and with probability
1−G�t� it is not yet infected at time t given it will be infected
at some later time. Thus

Q0
�d+1,k��t� = 1 − r + r�1 − G�t�� . �A5�

On the other hand, with probability r node j will be infected
at some time �, with distribution function G���, and continue
the spreading dynamics to subsequent generations. Once
node j is infected, the number of infected nodes in the branch
rooted at node j is a random variable with probability distri-

bution Pn
�d+1,k���t−��, given node j has degree k�. Therefore,

Qn
�d+1,k��t� = r�

k�

q�k��k�

0

t

dG���Pn
�d+1,k���t − �� �A6�

for n�0. From Eqs. �A4�–�A6� we finally obtain Eqs.
�A1�–�A3�. �

Let I�t�dt be the average number of nodes that are in-
fected between times t and t+dt �incidence�, i.e.,

I�t� =
d

dt
�
k=0

�

pk�
N=0

�

Pn
�0,k��t�n . �A7�

Using the recursive relations for Pn
�d,k��t� �A1�–�A3� we ob-

tain the following result.
Proposition 2.

I�t� = �
d=1

D

rdzd
dG�d�t�

dt
, �A8�

where
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G�d�t� = 

0

t

dG��1�

0

�1

dG��2� ¯ 

0

�d−1

dG��d� �A9�

is the d-order convolution of G���, giving the probability
distribution function of the sum of d generation times.

Proof. To obtain n�t� we are going to make use of the
generation function

F�d,k��x,t� = �
n=0

�

Pn
�d,k��t�xn. �A10�

Using the recursive equations �A1�–�A3� for Pn
�d,k��t� we ob-

tain

F�0,k��x,t� = x�1 − r + r�1 − G�t��

+ r �
k�=1

kmax

q�k��k�

0

t

dG���F�1,k���x,t − ���k

,

�A11�

F�d,k��x,t� = x�1 − r + r�1 − G�t��

+ r �
k�=1

kmax

q�k��k�

0

t

dG���F�d+1,k���x,t − ���k−1

,

�A12�

F�0,k��x,t� = x . �A13�

We denote by

M�d,k��t� =
�F�d,k��1,t�

�x
�A14�

the mean number of infected nodes on the branch rooted at a
node at layer d with degree k. Making use of the recursive
relations �A11�–�A13� we obtain

M�0,k��t� = 1 + �1 − r�

0

t

dG���M�1,k��t − �� , �A15�

M�d,k��t� = 1 + �1 − r�

0

t

dG���M�d+1,k��t − �� , �A16�

M�D,k��t� = 1. �A17�

Iterating the recursive relations �A15�–�A17� from d=D to
d=0 we obtain

M�0,k��t� = 1 + �
d=1

D

rdG�d�t�k�
k1

q�k1�k��k1 − 1��
k2

q�k2�k1�

��k2 − 1� ¯ �
kd−1

q�kd−1�kk−2��kd−1 − 1� . �A18�

Note that from �A10� and �A14� it follows that

�
n=1

�

Pn
�0,k��t�n = M�0,k��t� . �A19�

Substituting �A18� into �A19� and the result into �A7� we
obtain �A8� with

zd = �
k

pkk�
k1

q�k1�k��k1 − 1��
k2

q�k2�k1��k2 − 1� ¯

��
kd−1

q�kd−1�kk−2��kd−1 − 1� . �A20�

Finally, using the detailed balance condition �2� we reduce
�A20� to �12�. �
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